A Method for Evaluating the Quality of 3D-Printing Metal Parts

The roble had hit a record low after the West imposed sweeping sanctions on Russia for its aggression in Ukraine. Russia's president recently ordered exports of Russian gas to "unfriendly" countries to be settled in robles. The speaker of Russia's upper house of parliament said Moscow was prepared and could shift supplies to markets such as Asia if Europe refused to buy Russian energy.

European countries, which pay mostly in euros, say Russia has no right to reset contracts.  The G7 rejected Russia's demand and urged companies not to agree to pay in robles, saying most contracts stipulated payment in euros or dollars. Wholesale gas prices in Europe have risen further recently on concerns about potential supply disruptions.

The Kremlin spokesman said, "According to the March 31 deadline set by Russia's president, we are developing all payment methods to get a simple, understandable, and feasible system for relevant European and international buyers,"

The markets and prices of more commodities like the 3D printing metal powder would be affected because of the volatile international political situations.

Researchers at NTU Singapore have developed a fast and low-cost imaging method for assessing the quality of 3D-printed metal parts. This method can analyze the structure and material quality of 3D-printed metal parts. 
 
Most 3D-printed metal alloys consist of numerous microscopic crystals that vary in shape, size, and orientation of the atomic lattice. By mapping this information, scientists and engineers can infer the alloy's properties, such as strength and toughness. It's like looking at wood grain. When wood grain is continuous in the same direction, strength and toughness are strongest.
 
The new technology could benefit the aerospace sector - enabling low-cost rapid assessment of turbines, fan blades, and other critical components, which is of great significance to the maintenance and overhaul industry. 
 
Until now, however, analyzing the "microstructure" in 3D-printed metal alloys has been a time-consuming and laborious process, usually achieved using measurements made with scanning electron microscopes, which cost between S $100,000 and S $2 million. 
 
But the new alloy imaging method developed by Assistant Professor Matteo Seita and his team at NTU provides quality analysis in just a few minutes. They used a system of optical cameras, flashlights, and laptops that ran proprietary machine learning software developed by the team at a total cost of about $25,000.
 
The method involves treating the metal surface with chemicals to reveal its microstructure, then holding the sample facing the camera and using a flashlight to illuminate the metal in different directions to take multiple optical images. The software then analyzes the patterns produced by the light reflected off the surfaces of different metal crystals and deduces their orientation. The whole process takes about 15 minutes. The team's findings have been published in NPJ Computational Materials.
 
"By using our low-cost and fast imaging method, we can easily tell the difference between good 3D-printed metal parts and defective parts. Currently, it is impossible to tell the difference unless we evaluate the microstructure of the materials in detail, "explained Seita, an assistant professor at NTU's School of Mechanical and Aerospace Engineering and School of Materials Science and Engineering. 
 
"Even though two 3D-printed metal parts may be produced using the same technology and have the same geometry, they are never the same. In theory, this is similar to how two originally identical wooden objects could have different texture structures." 
 
New imaging methods improve 3D printing certification and quality assessment.  Assistant Professor Seita believes their innovative imaging method could simplify the certification and quality assessment of metal alloy parts produced by 3D printing, also known as additive manufacturing.
 
One of the most common techniques for 3D printing metal parts is to use high-powered lasers to melt metal powders and fuse them layer by layer until a complete product is printed. 
 
However, the microstructure, and thus the quality of the printed metal, depends on many factors, including the speed or strength of the laser, how long the metal cools before the next layer is melted, and even the type and brand of metal powder used. This is why the same design printed by two different machines or production plants may result in parts of different quality. 
 
Instead of using a complex computer program to measure crystal orientation in the light signals collected, the "smart software" developed by Assistant Professor Seita and his team uses a neural network to simulate how the human brain forms associations and processes thoughts. The team then used machine learning to program the software to feed it hundreds of optical images. 
 
Their software eventually learned how to predict the orientation of crystals in metal from an image, depending on how light scatters from the metal's surface. A complete "crystal orientation diagram" is then created, which provides comprehensive information about crystal shape, size, and atomic lattice orientation.
 
3D printing metal powder Price
The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.
If you are looking for the latest 3D printing metal powder price, you can send us your inquiry for a quote. ([email protected])
 
3D printing metal powder Supplier
Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and nanomaterials including silicon powder, nitride powder, graphite powder, zinc sulfide, calcium nitride, 3D printing powder, etc.
If you are looking for high-quality 3D printing metal powder, please feel free to contact us and send an inquiry. ([email protected])

 

For Germany, the largest economy in Europe, the impact of the Russian-Ukrainian conflict on the natural gas market is the most obvious. This also exposed the serious dependence of some German industrial enterprises on Russian natural gas. Some analysts pointed out that the instability of natural gas supply has had a big impact on the German economy and threatened its market competitiveness because alternative energy supplies will not be cheap and difficult to come quickly. Increased uncertainty over natural gas supplies is putting enormous pressure on German manufacturers in sectors ranging from steelmaking to chemical 3D printing metal powder for the time being, but the market demand for 3D printing metal powder in the future will also change with the influence of various external factors. If you need 3D printing metal powder, please feel free to contact us.

Inquiry us

Our Latest Products

Metal Alloy High Purity Tungsten Crucibles

About Metal Alloy High Purity Tungsten Crucibles:Chemical composition:…

Metal Alloy Vacuum Coating Tungsten Melting Pot Tungsten Crucibles

About Metal Alloy Vacuum Coating Tungsten Melting Pot Tungsten Crucibles:Chemical composition:…

Metal Alloy Fine Surface 19.15g/cm3 Tungsten Targets

About Metal Alloy Fine Surface 19.15g/cm3 Tungsten Targets:Chemical composition:…