What is Boron carbide
Boron carburide is a high-performance carbon compound, which is composed primarily of boron, carbon, and other elements. The chemical formula for B4C is B4C. It is widely used by industries, the military, aerospace and other fields because of its characteristics, such as high hardness and high melting point. This article will give a detailed description of the physical properties and chemical composition, as well as preparation methods, performance characteristics, and application areas for boron carbide. References are provided to support research in other fields.
Physical Properties
Boron carbide, a non-metallic inorganic material, has a mass density of 2.52g/cm3. It has a cubic lattice structure, a dense black crystal and a 0.243nm lattice constant. Boron carbide exhibits a low electrical conductivity of only 10-6S/m, and has excellent insulation. Its thermal conductivity (97W/m*K) is lower than metals, silicon and ceramics but higher than glass and other materials.
Chemical Properties
Boron carbide exhibits chemical stability, and it is not reactive to acids and alkalis. B4C is reactive with H2O and O2. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it a good choice for long-term usage in high-temperature, corrosive environments.
Preparation method
Preparation methods for
boron carbide
The main methods are the carbon thermal decomposition method, arc melting and chemical vapour deposit method.
Methode de réduction du carbothermal
The carbon thermal method is widely used to prepare
boron carbide
. This method generates carbon dioxide and boron carburide by melting boric black and carbon. The reaction formula is B2O3+3C + B4C+CO. The reaction temperature ranges from 1500 to 1700°C. This method has the advantage of being simple, low-cost, and easy to use. However, the boron carbide produced is not of high purity.
Arc melting method
In the arc melting process, graphite electrodes are heated and melted in a reaction between boric acid and borax to create boron carbide. The reaction equation is: B2O3+3C + B4C. The reaction temperature ranges between 18002000 degrees. The boron-carbide prepared using this method is high in purity, with fine particles. However, the process is complicated and expensive.
Chemical vapour deposition method
Chemical vapour deposition uses the reaction of gaseous carbon black and borane at high temperature to create boron carburide. The reaction formula is B2H6+6C + B4C+6H2. Reaction temperature ranges between 1000-1200°C. This method yields boron-carbide with high purity, superfine particles and a complex and expensive process.
Performance Characterization
The performance characterisation of
boron carbide
The term mainly refers to physical, chemical, or mechanical properties.
Physical Property
Density, conductivity and thermal conductivity are the main physical properties of Boron carbide. There are three main physical properties of boron carbide: density, conductivity, and thermal conductivity.
Chemical property
Boron carbide exhibits chemical stability, and it is not reactive to acids and alkalis. B4C is reactive with O2, H2O and other substances. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for use over a long period of time in high-temperature, corrosive environments.
Mechanical property
Boron carbide's high hardness, melting temperature, and heat transfer make it a popular material in many industries. Hardness of 3500kg/mm2, melting point 2450, and heat transfer rate 135W/m*K are among the characteristics that make boron carbide so popular in industries, military, aerospace, and other fields.
RBOSCHCO
RBOSCHCO, a global chemical material manufacturer and supplier with more than 12 years of experience, is known for its high-quality Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. RBOSCHCO, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions to increase the efficiency of different industries, create value and overcome various challenges. Send an email to Sales1@rboschco.com, if you're looking for Boron Carbide.
Inquiry us